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}' Goals of Presentation

 What is a Supercritical CO, Brayton Cycle?

» Benefits of S-CO, Power Systems

— Economic and Environmental
— All Heat Sources

DOE-NE Gen-1V S-CO, Research Program
Applications List (Fossil, Solar, Nuclear)

Scaling Study Results (10 MWe)

— 10 MWe Development and Demonstration Program Status of
Development Effort

— Commercial and Government
Summary and Conclusions



What is a Supercritical CO, Brayton Cycle?
How does it work?

& Department of Machanical Engineering, Stanford University
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gpercritical CO, Cycle Applicable to Most
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Key Features to a Supercritical Brayton Cycle

Peak Turbine Inlet Temp is well matched to a Variety of
Heat Sources (Nuclear, Solar, Gas, Coal, Syn-Gas, Geo)

« Efficient ~43% - 50% for 10 - 300 MW, Systems
— 1000 F (810 K) ~538 C Efficiency =43 %
— 1292 F (1565 K) ~ 700 C Efficiency =50%
« Advanced Systems (Increase Eff 5-8% points) & Dry

« Standard Materials (Stainless Steels and Inconels)

« High Power Density for Conversion System
— ~30 X smaller than Steam or 6 X for Helium or Air
— Transportability (Unique or Enabling Capability)

— HX’s Use Advanced Printed Circuit Board Heat Exchanger
(PCHE) Technology

 Modular Capability at ~10-20 MWe
—  Factory Manufacturable (10 MW ~ 2.5m x 8m) Good Efficiency at Low Operating Temps

Standard Materials, Small Size, Simple,
Modular & Transportable
AFFORDABLE and FABRICABLE

Modular & Self Contained
Power Conversion Systems
~15mx8m

Advanced
Heat Exchangers
Meggit / Heatric Co.



Heat Source Operating Temperature Range
& SCO, Power Conversion Efficiency
for Various Heat Sources

TempC 100 200 300 400 500 600 700 800 900 1000

Fossil &
Bio Fuels

Solar Power Tower

Solar Trough

17.5% 31% 44% 50% Advanced Condensing Cycle SCO,
Geo Thermal GROWTH POTENTIAL
Wdter 33% |  Sodium 419% CO, 43% Hg Gas 43% EXisting technoldgies
Nuclear Reactor Technologies
LWR SF AGR HTGR |
37% 50% 56% Wet
32% 48% 53 % Dry
Advanced Cycles SCO, GROWTH POTENTIAL

S-CO, Power Conversion Operating Temperatures are Applicable for All Heat Sources
Optimum Design Requires Different Approaches for Each Heat Source
Supercritical Fluid Technology has Untapped Growth Potential

Assumptions (Turbomachinery Eff (85%/87%/90% : MC/RC/T), 5 K Approach T, 5% dp/p losses, Hotel Losses Not In Included, Dry Cooling at 120 F) l r‘
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DOE Supercritical CO, Program
Description
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 DOE Gen-lV S-CO, Research Program
— Sandia has developed two S-CO, loops
« Compression Loop (At Sandia) + Brayton Loop (At Barber-Nichols)
» Testing Summary

— Brayton and Compression Loop Descriptions
— Compressor Performance Mapping

— Power Generation in Simple Heated Brayton Cycle
and in Split-Flow Re-compression Brayton Loop
— Mixtures
— Condensation Cycles / Rankine
— Gas Foil Bearing Development
— Thrust Bearing Heating
— High Speed PM Motor Generator Controller Development
— Sealing Technology
» Modeling
« Ability of Sandia S-CO,, Brayton Loop to Reproduce Other Cycles

« Summary and Conclusions
Fi



— ' Key Technology
p Turbo- Alternator Compressor Design
Permanent Magnet Generator with Gas Foil Bearings
~24” Long by 12” diameter

Tie Bolts (Pre-stressed) Low Pressure Rotor Cavity

Chamber (150 psia)

Turbine , Laby Seals

a

' \ Compressor
Journal Bearing Stator

Water Cooling PM Motor Generator Thrust Bearing

125 kWe at 75,000 rpm

Barb r.
[_.



Turbomachinery Wheels
Designed and Manufactured By Barber-Nichols Inc.

Main Re- Turbine for Turbine for
Re-Compressor Main Compressor

OD=37.3 mm OD=57.9 mm OD=68.3 mm OD=68.1 mm

1.47" 2.27" 2.69" 2.68" [



Compressor Maps
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GenlV- Supercrltcal CO, Brayton Cycle Loop

Motor

Generator
Controllers




Supercritical S-CO,
Brayton Cycle DOE-Gen IV
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Supercritical CO, Brayton Loop
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Power Generation in Upgraded S-CO2
Simple Heated Recuperated Brayton Loop
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Measured T-S Diagram

GenlV_1107/14 0952

T-s [Nagram
DOE 5H. Ted "GenlV 190714 952"
At 570 [4 intp the test
Generated Power = 151196 B
&  State 1- Comp Inlet
ing-B
600 - B State 2- LT Recup HP Side Inlet Turbing-
<  State 3 - HT Recup HP Side Inlet
& State 4 - Heater Inlet
=  State 5- Turbine Inlet
4 State 6- HT Recup LP Side Inlet Haaters
5 & State 7- LT Recup LP Side Inlet
m  State 8 - Chiller Inlet
SN -
¥
@
=
= 40—
[ar )
£ HT Recup HP
_ HT Recup LP
SN -
LT Rgcup HP
-
LT Requp LP
Comprgssor-B
AN T—
/| ! ! \ ! ! | | |
800 1008 1200 1400 1600 1800 2000 2400 2600
Specilic Entrapy [ McHK]



L oss Measurements
C-2 Compressor T-2 Turbine

Fraction of Turbine Power Used or Lost
Ther

Fraction Elect. Loss
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¢ S-CO, Power Cycle Economic anad
a‘" Environmental Benefits

 DOE has invested 5 years and ~ $10-11 M on Proof-of-Principle S-CO,
Power Systems
« The Potential Economic and Environmental Benefits of S-CO, Power
Systems are Large
— Useful with All Heat Sources
— Dry Cooling, Oxy-Combustion with CCS and EOR, Smaller, Simpler, Improved
Efficiency
* Development is Still Needed
— To date only small scale proof-of-concept development loops are operating
— Heat Source and Power Cycle are Linked (Cycle/Design Research)

— Heat Exchanger Development is Needed

» Micro-Channel Design Costs, Transient Cycling, Packaging, Failure Modes, Cost
Reductions, Nuclear Certification

— Commercial Engineering and Demonstration is Needed using
Industrial Hardware (=10 MW,)

« Already started in industry
« Government/Industry Partnership Role Makes Sense

[k



Scaling Study
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Key Brayton Cycle Turbomachinery Com

e Power (MWe)
eature
0|.3 1,0 3i0 1.0 ?I>O 100 3|00
TM Speed/Size | 75000/5cm 30,000/ 14 cm 10,000/ 40cm 3600/1.2m
| Single.stage Radial multi stage |
Turbine type : : | Axial multi stage]
Single stage Radial multi stage l :
: [ single stage Axial multi stage
: n :
e Gas Foil | | Hydrodynamic oil |
i Magnetic | | Hydrostatic |
: L H
Seals Adv labyrinth 9 :
: [ Dry lift off |
- . :
: - :
Freg/alternator | Permanent Magnet | - [ Wound, Synchronous |
[ Gearbox, Synchronous | i
: u :
Shaft | Dual/Multiple m :
Configuration L Single Shaft
. :

Commercial Technology

High Technology :
High $/kWe

Lower $/kWe

» 10 MWe allows use of Commercial Technologies

caling Rules and Ranges of Application for

ponents



and Turbine Wheel Diameter

V; \ Approximate Shaft Speed

Turbine Diameter versus Elect. Power

Shaft Speed versus Elect. Power
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g Printed Circuit Heat Exchanger Scaling Rules

Actual Specific Costs
Cost  kw Ib Ib/kW $/b SIKW,,
60000 510 492 0.96 122 118
106000 1600 551 0.34 192 66
210000 2300 1410 0.61 149
Average 0.64 154 (/:;\T = $ 600/kW,
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Need Cost Reductions (Materials, Scale, & Advanced Manuf.) to reach 200$/ kWe (r.



Potential Applications

* Nuclear
(LWR, SFR, GCR, Molten Salt Reactors)

« Concentrated Solar Power (CSP) Towers + Troughs
« Military (Fixed Base and Marine)

* Fossil
— Oxy-combustion with Pulverized Coal with CCS + EOR

« Solar Power Towers

* Integrated Bio-Fuel/SCO, Plant

« Military Applications (Fixed Base and Marine)
 Geo-Thermal

« Waste Heat Applications
— Gas Turbine Bottoming Cycle
— Supercritical Water Oxidation



Concentrated Solar Applications

Small or Big ?
1-10 MWe or 100 MWe

Modular s-CO2 receiver / power

block in each tower...
Advanced S-CO, Power System

Reheat and Inter-Cooling TIT=700C

S-CO2 Recompression Brayton Cycle
(with Reheatand IC)

0.900

0.800 L\
0700 \\-\.__4

0.600 —_—— .

Efficiency or Split Flow Fraction

0.500
——Efficiency
0.400 +——=m=SplitFlow Fracton————
0.300
0.200
280 290 300 310 320 330

Compressor Inlet T

or centralized s-CO2 power block with salt receivers?

(i)



'; \ Fossil Application

Oxy-Coal Combustion

Long flue gas recycle

Short flue gas recycle

ENEL (Italy)
to steam @ Rl
ower
02 —p power cycle
CWS —> B f\ B
M Tempering Boiler
¢ Pressurised Steam Rankine (ENEL)
Vitrified Slag oxy-coal combustor Gas Turbine (CES)

S-CO2
Or Combinations (PWR)

i
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&' Nuclear Applications

Why i1s DOE-NE Interested?

1) Better efficiency than existing plants

2) Smaller Power Plants
(30% of Steam)
3) Simpler Power Plants

(1/20™ number of valves)

4) May Eliminate the Intermediate Loop in Sodium Fast
Reactors

[



S-CO, Power Cycles for Reactors

Henelr ¢ qui mient Pasitioner Weluete  Rescwor -
sintcnanee xed marhing  awtiliary S C O 2
repaar building \ ‘[’ | huikieg
Crame contral mm\ } f
GCRs

Hlectrical-techmical Waste Heat
bullding, \Cooler
\

NGNP

~54%

~ 50 % Efficiency
(S-CO, Brayton)

High Temperature
Gas Cooled Reactor

850-900 C "‘ ATy

~46 %

Sodium Cooled SFRs
Reactor :
500-550 C Sodium Wase Hea ~ 43 % Efficiency
(S-CO, Brayton)
525C
- CO, 4 7 8 I_, ‘
LWRs
Pressurized LWRs
\é\é%tg Reactor ~ 40 % Efficiency
(S-CO, Recup Rankine
Condensing Brayton)
Potential SMR 2 :
Applications | rewp e n ]



Sandia Research Program Summary

Sandia/DOE have two operating S-CO, test loops
— Research Compression Loop
— Reconfigurable Brayton Loop

Measured Main Compressor Flow Maps
— Overall Good Agreement with Mean-Line Predictions of the Performance Maps
— Over awide range of operating Temperature, pressure, and density

Using Brayton loop Configuration available in FY2010 and 2011
Heater power was limited to 260/390/520 kW
* Produced Power in simple heated recuperated Brayton loops (Main TAC and Re-Comp TAC)
* Power Production in recompression loops (still limit to break even)
* Cold Startup, Breakeven, Power Production (6% efficiency and 20 kWe), Power/RPM Operation Maps
Condensation in Tube and Shell and PCHE heat exchangers
— Improved Efficiency, HX Development work is beginning

Test (critical point) were performed with Mixtures of CO,, CO,-Neon, CO, SF,
CO,-Butane

— Can Increase or decrease T
— Improved Efficiency (especially for low temperature applications)

Thrust Gas Foil Bearing Tests and Modeling

— Goal : higher thrust load capability and lower frictional power

Natural Circulation
- S-CO, Gas Fast Reactor
— C3D CFD Model development

Collaborations with Industry + Larger Scale System Development

[
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& Path Forward
— Path Forward
« Continue Testing of Proof-of-Principle Small Loop

 Work/Collaborate with Industry and other Agencies to develop
S-CO, System for any heat source at the 10 MW, sized system

 Propose for First Nuclear Applications
— Use with LWRs
— Wet and Dry Cooling
— 37% and 30% Efficiencies
— Develop S-CO2 Systems for Nuclear Technology

— Begin Seeking Gov. Funded 10 MWe S-CO2 power system
development to support FE, EERE, NE, Other
» Useful for all heat sources (Nuclear, Solar, Fossil, Geothermal)

« Numerous early non-nuclear Products (Marine, Fossil, Solar,
Geo, Waste Heat, Heat Storage and Transport)

 Improved the economic and environmental benefits for all
systems (Smaller, Simpler, more Efficient, No Water Cooling)

[
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S-CO,: Potential

Potential for S-CO, Power Generation

Systems to Improve Economics and
Environmental Issues on a Large Scale

1) Dry Cooling

2) Oxy-Combustion, with CCS and EOR
3) Smaller and Simpler (than steam)

4) Improved Efficiency

5) Combined Heating, Cooling, and Power
Cycles

Applicable For All Types of Heat Sources

[k



